Search results

Search for "atomistic simulation" in Full Text gives 13 result(s) in Beilstein Journal of Nanotechnology.

Irradiation-driven molecular dynamics simulation of the FEBID process for Pt(PF3)4

  • Alexey Prosvetov,
  • Alexey V. Verkhovtsev,
  • Gennady Sushko and
  • Andrey V. Solov’yov

Beilstein J. Nanotechnol. 2021, 12, 1151–1172, doi:10.3762/bjnano.12.86

Graphical Abstract
  • presents a detailed computational protocol for the atomistic simulation of formation and growth of metal-containing nanostructures during focused electron beam-induced deposition (FEBID). The protocol is based upon irradiation-driven molecular dynamics (IDMD), a novel and general methodology for computer
  • the corresponding input parameters are summarized in Figure 1. The formulated procedure for the atomistic simulation of FEBID is general and applicable to any combination of precursor, substrate, and electron beam with minimum variations of the case-specific parameters. The methodology can also be
PDF
Album
Full Research Paper
Published 13 Oct 2021

Quantitative determination of the interaction potential between two surfaces using frequency-modulated atomic force microscopy

  • Nicholas Chan,
  • Carrie Lin,
  • Tevis Jacobs,
  • Robert W. Carpick and
  • Philip Egberts

Beilstein J. Nanotechnol. 2020, 11, 729–739, doi:10.3762/bjnano.11.60

Graphical Abstract
  • experiments is often challenging as the measured adhesion and friction forces cannot provide direct mechanistic understanding of atomic-scale interactions that occur at the contact interface. Thus, it is often desirable to incorporate complementary atomistic simulation techniques [18][19][20][21] or contact
PDF
Album
Full Research Paper
Published 06 May 2020

Long-term entrapment and temperature-controlled-release of SF6 gas in metal–organic frameworks (MOFs)

  • Hana Bunzen,
  • Andreas Kalytta-Mewes,
  • Leo van Wüllen and
  • Dirk Volkmer

Beilstein J. Nanotechnol. 2019, 10, 1851–1859, doi:10.3762/bjnano.10.180

Graphical Abstract
  • simulations Theoretical calculations were performed in order to determine the activation energy parameters from atomistic simulation data. Briefly, the approach previously described for scanning the minimum energy path of xenon atoms crossing the small pore in MFU-4 [13] was adapted and further refined in
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2019

Effect of annealing treatments on CeO2 grown on TiN and Si substrates by atomic layer deposition

  • Silvia Vangelista,
  • Rossella Piagge,
  • Satu Ek and
  • Alessio Lamperti

Beilstein J. Nanotechnol. 2018, 9, 890–899, doi:10.3762/bjnano.9.83

Graphical Abstract
  • . This behavior can be tentatively set using the model already reported for CeO2 grown by MOCVD at different temperatures and on different substrates [36], adjusting the interpretation to our ALD growth. Generally, from atomistic simulation it has been estimated that the energy stabilities of the CeO2
PDF
Album
Full Research Paper
Published 15 Mar 2018

Coupled molecular and cantilever dynamics model for frequency-modulated atomic force microscopy

  • Michael Klocke and
  • Dietrich E. Wolf

Beilstein J. Nanotechnol. 2016, 7, 708–720, doi:10.3762/bjnano.7.63

Graphical Abstract
  • of the tip in an atomistic simulation. Instead of being guided along a predefined curve, the tip atoms move in a harmonic potential representing the elastic restoring force of the bent cantilever. This has several advantages. The frequency shift and the cantilever damping are simulated directly, and
  • include the full extent of an AFM cantilever nor that of a substrate within an atomistic simulation. As in previous studies [1][6][20][21][22] the simulation must be restricted to a small volume around the crucial region of interaction between the tip and the substrate. This is sketched in Figure 1. The
PDF
Album
Full Research Paper
Published 17 May 2016

Plasticity-mediated collapse and recrystallization in hollow copper nanowires: a molecular dynamics simulation

  • Amlan Dutta,
  • Arup Kumar Raychaudhuri and
  • Tanusri Saha-Dasgupta

Beilstein J. Nanotechnol. 2016, 7, 228–235, doi:10.3762/bjnano.7.21

Graphical Abstract
  • still needs to be probed through rigorous atomistic simulation without relying on the preconceived notion of diffusive transport of vacancies. In this article, we study the above-mentioned issue by performing molecular dynamics (MD) simulation of ultra-thin single crystalline copper nanowire (NW) with
PDF
Album
Full Research Paper
Published 10 Feb 2016

Nonconservative current-driven dynamics: beyond the nanoscale

  • Brian Cunningham,
  • Tchavdar N. Todorov and
  • Daniel Dundas

Beilstein J. Nanotechnol. 2015, 6, 2140–2147, doi:10.3762/bjnano.6.219

Graphical Abstract
  • Brian Cunningham Tchavdar N. Todorov Daniel Dundas Atomistic Simulation Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, U.K. 10.3762/bjnano.6.219 Abstract Long metallic nanowires combine crucial factors for nonconservative current-driven atomic motion
PDF
Album
Full Research Paper
Published 13 Nov 2015

Simulation of thermal stress and buckling instability in Si/Ge and Ge/Si core/shell nanowires

  • Suvankar Das,
  • Amitava Moitra,
  • Mishreyee Bhattacharya and
  • Amlan Dutta

Beilstein J. Nanotechnol. 2015, 6, 1970–1977, doi:10.3762/bjnano.6.201

Graphical Abstract
  • employs the method of atomistic simulation to estimate the thermal stress experienced by Si/Ge and Ge/Si, ultrathin, core/shell nanowires with fixed ends. The underlying technique involves the computation of Young’s modulus and the linear coefficient of thermal expansion through separate simulations
  • proposed methodology can be extended to other materials and structures and helps with the prediction of the conditions under which a nanowire-based device might possibly fail due to elastic instability. Keywords: atomistic simulation; buckling; core–shell nanowire; thermal stress; Introduction In recent
PDF
Album
Full Research Paper
Published 02 Oct 2015

Multiscale modeling of lithium ion batteries: thermal aspects

  • Arnulf Latz and
  • Jochen Zausch

Beilstein J. Nanotechnol. 2015, 6, 987–1007, doi:10.3762/bjnano.6.102

Graphical Abstract
  • mostly of electronic nature in the active particles. These differences require different atomistic simulation techniques for the determination of the transport coefficients, but the form of the macroscopic equations is not affected by these differences. To couple the transport in the electrolyte and the
PDF
Album
Full Research Paper
Published 20 Apr 2015

Large-scale atomistic and quantum-mechanical simulations of a Nafion membrane: Morphology, proton solvation and charge transport

  • Pavel V. Komarov,
  • Pavel G. Khalatur and
  • Alexei R. Khokhlov

Beilstein J. Nanotechnol. 2013, 4, 567–587, doi:10.3762/bjnano.4.65

Graphical Abstract
  • hindered translational motions of cations reveal that ion association observed with decreasing temperature is largely an entropic effect related to the loss of low-frequency modes. Based on the results from the atomistic simulation of the morphology of Nafion, we developed a realistic model of ion
  • observe the bimodality of the van Hove autocorrelation function, which provides the direct evidence of the Grotthuss bond-exchange (hopping) mechanism as a significant contributor to the proton conductivity. Keywords: atomistic simulation; morphology; Nafion membrane; proton transport; quantum molecular
  • processor cores), 1554 512-core Tesla X2070 GPUs from Nvidia, and Infiniband QDRinterconnect. Most of our MD simulations were carried out in parallel on 512 hybrid (CPU/GPU) nodes. Morphology As an example, Figure 3 shows typical snapshots obtained from the atomistic simulation of the three systems studied
PDF
Album
Full Research Paper
Published 26 Sep 2013

Influence of the solvent on the stability of bis(terpyridine) structures on graphite

  • Daniela Künzel and
  • Axel Groß

Beilstein J. Nanotechnol. 2013, 4, 269–277, doi:10.3762/bjnano.4.29

Graphical Abstract
  • for atomistic simulation studies) [22], Dreiding [23] and Consistent Valence (CVFF) [24] force fields included in the Forcite module of the Accelrys’ Materials Studio package. The graphite surface is modeled by a five-layer graphite (0001) slab. Convergence criteria are chosen according to the
PDF
Album
Full Research Paper
Published 22 Apr 2013

Nanotribology at high temperatures

  • Saurav Goel,
  • Alexander Stukowski,
  • Gaurav Goel,
  • Xichun Luo and
  • Robert L. Reuben

Beilstein J. Nanotechnol. 2012, 3, 586–588, doi:10.3762/bjnano.3.68

Graphical Abstract
  • friction and nearly zero wear [1]. Recent research, however, has shown a steep rise in the grazing friction during wearless sliding, primarily attributed to the adhesion between the interacting surfaces [2]. A major assumption in the atomistic simulation associated with this finding was the consideration
PDF
Album
Commentary
Published 15 Aug 2012

Nonconservative current-induced forces: A physical interpretation

  • Tchavdar N. Todorov,
  • Daniel Dundas,
  • Anthony T. Paxton and
  • Andrew P. Horsfield

Beilstein J. Nanotechnol. 2011, 2, 727–733, doi:10.3762/bjnano.2.79

Graphical Abstract
  • Tchavdar N. Todorov Daniel Dundas Anthony T. Paxton Andrew P. Horsfield Atomistic Simulation Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, UK Department of Materials, Imperial College, London SW7 2AZ, UK 10.3762/bjnano.2.79 Abstract We give a physical
PDF
Album
Full Research Paper
Published 27 Oct 2011
Other Beilstein-Institut Open Science Activities